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Abstract. We analyze the moments of the isosinglet generalized parton distributions H, E, H̃, Ẽ of the
nucleon in one-loop order of heavy-baryon chiral perturbation theory. We discuss in detail the construction
of the operators in the effective theory that are required to obtain all corrections to a given order in the
chiral power counting. The results will serve to improve the extrapolation of lattice results to the chiral
limit.
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1 Introduction

In recent years one has learned that many aspects of
hadron structure can be described in the unifying frame-
work of generalized parton distributions (GPDs). This
framework allows one to combine information which comes
from very different sources in an efficient and model-
independent manner. The field was pioneered in [1–3] and
has evolved to considerable complexity, reviewed, for in-
stance, in [4–7]. As GPDs can be analyzed using standard
operator product expansion techniques [1,8], their mo-
ments can be and have been calculated in lattice QCD [9].
Lattice calculations of well-measured quantities can be
used to check the accuracy of the method, which may
then be employed to evaluate quantities that are much
harder to determine experimentally. This complementar-
ity is especially valuable in the context of GPDs, because
experimental measurements as, e.g., in [10] may not be
sufficient to determine these functions of three kinematic
variables in a model-independent way. Moreover, several
moments of GPDs admit a physically intuitive interpreta-
tion in terms of the spatial and spin structure of hadrons,
see, e.g., [2,11–13].

A notorious problem of lattice QCD is the need for
various extrapolations from the actual simulations with fi-
nite lattice spacing, finite volume and unphysically heavy
quarks to the continuum, infinite volume and physical
quark masses. Simple phenomenological fits are often still
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sufficient in view of the general size of uncertainties, but
with increasing numerical precision more reliable methods
have to be applied. Chiral perturbation theory (ChPT)
provides such a method [14]. Describing the exact low-
energy limit of QCD it predicts the functional form for
the dependence of observables on the finite volume and
the pion mass [15] and also the finite lattice spacing [16].
At a given order in the expansion parameter, ChPT de-
fines a number of low-energy constants which determine
each of these limits. Some of these constants are typically
known from independent sources, and the remaining ones
have to be determined from fits to the lattice data. The
task of ChPT is thus to provide the corresponding func-
tional expressions for a sufficient number of observables.
In this paper we contribute to this endeavor by analyzing
the moments of the isoscalar nucleon GPDs H, E, H̃ and
Ẽ in one-loop order.

The analysis of pion GPDs in ChPT has been
performed in several papers [17–19]. In the case of the
nucleon GPDs, the chiral corrections have been calculated
for the lowest moments [20,17,21] in the framework of
heavy-baryon ChPT, which performs an expansion in
the inverse nucleon mass 1/M . Due to the kinematic
limit taken in this scheme, the sum and difference of
the incoming and outgoing nucleon momenta pµ and
p′µ are of different order in 1/M . As a consequence, the
n-th moment of a nucleon GPD contains terms up to
the n-th order in the 1/M expansion. Given the rapidly
growing number of low-energy constants in higher orders
of ChPT, it has been assumed that the chiral corrections
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can only be calculated for the terms of lowest order
in 1/M , i.e. for the form factors accompanied by the
smallest number of vectors (p′ − p)µ. This would be a
serious setback for the program sketched above. The aim
of the present paper is to show that the situation is much
better. In particular, we find that the corrections of order
O(mπ) and O(m2

π) to all form factors parameterizing
the moments of chiral-even isoscalar nucleon GPDs come
from one-loop diagrams in ChPT and the corresponding
higher-order tree-level insertions.

This paper is organized as follows. In sect. 2 we re-
call the relation between moments of nucleon GPDs and
matrix elements of twist-two operators and rewrite it in a
form suitable for the 1/M expansion. In sect. 3 we discuss
the construction of twist-two operators in heavy-baryon
ChPT and give a general power-counting scheme for their
contribution to a given nucleon matrix element. In sects. 4
and 5 we identify the operators that contribute to mo-
ments of GPDs at lowest order in the chiral expansion and
give the results of the corresponding loop calculations. We
summarize our findings in sect. 6.

2 Generalized parton distributions in the

nucleon

The nucleon GPDs can be introduced as matrix elements
of nonlocal operators. In this paper we limit ourselves to
the chiral-even isoscalar quark GPDs, which are defined
by
∫

dλ

4π
eixλ(aP )〈p′| q̄(− 1

2λa) /a q(
1
2λa) |p〉

=
1

2aP
ū(p′)

[
/aH(x, ξ, t) +

iσµνaµ∆ν

2M
E(x, ξ, t)

]
u(p) ,

∫
dλ

4π
eixλ(aP )〈p′| q̄(− 1

2λa) /aγ5 q(
1
2λa) |p〉

=
1

2aP
ū(p′)

[
/aγ5 H̃(x, ξ, t) +

a∆

2M
γ5 Ẽ(x, ξ, t)

]
u(p) , (1)

where a sum over u- and d-quark fields on the l.h.s. is
understood, so that H = Hu +Hd etc. Here a is a light-
like auxiliary vector, M is the nucleon mass, and we use
the standard notations for the kinematical variables

P =
1

2
(p+ p′), ∆ = p′ − p,

t = ∆2, ξ = −
∆a

2Pa
. (2)

As usual, Wilson lines between the quark fields are to
be inserted in (1) if one is not working in the light-cone
gauge aµAµ = 0. The x-moments of the nucleon GPDs
are related to the matrix elements of the local twist-two
operators

Oµ1µ2...µn = S q̄γµ1
iD
↔

µ2
. . . iD

↔

µn q ,

Õµ1µ2...µn = S q̄γµ1
γ5 iD
↔

µ2
. . . iD

↔

µn q , (3)

where D
↔

µ = 1
2 (D
→

µ −D
←

µ) and S denotes the symmetriza-
tion of all uncontracted Lorentz indices and the subtrac-
tion of traces, e.g., S tµν = 1

2 (tµν + tνµ) −
1
4 gµν t

λ
λ for a

tensor of rank two. It is convenient to contract all open
Lorentz indices with the auxiliary vector a,

Oµ1...µn → On(a) = aµ1 . . . aµn Oµ1...µn , (4)

and in analogy for Õ. The matrix elements of the opera-
tors (3) can be parameterized as [4,6]

〈p′|On(a)|p〉 =
n−1∑

k=0
even

(aP )n−k−1 (a∆)k ū(p′)

×

[
/aAn,k(t) +

iσµνaµ∆ν

2M
Bn,k(t)

]
u(p)

+ mod (n+1, 2)(a∆)n
1

M
ū(p′)u(p)Cn(t) ,

〈p′|Õn(a)|p〉 =
n−1∑

k=0
even

(aP )n−k−1 (a∆)k ū(p′)

×

[
/aγ5 Ãn,k(t) +

a∆

2M
γ5 B̃n,k(t)

]
u(p) . (5)

The moments of the above GPDs are polynomials in ξ2,

∫ 1

−1

dxxn−1H(x, ξ, t) =

n−1∑

k=0
even

(2ξ)k An,k(t)

+ mod(n+ 1, 2) (2ξ)nCn(t) ,
∫ 1

−1

dxxn−1E(x, ξ, t) =

n−1∑

k=0
even

(2ξ)k Bn,k(t)

− mod(n+ 1, 2) (2ξ)nCn(t) ,
∫ 1

−1

dxxn−1 H̃(x, ξ, t) =

n−1∑

k=0
even

(2ξ)k Ãn,k(t) ,

∫ 1

−1

dxxn−1 Ẽ(x, ξ, t) =

n−1∑

k=0
even

(2ξ)k B̃n,k(t) . (6)

The restriction to even k in (5) and (6) is a consequence
of time reversal invariance.

To calculate the chiral corrections to the nucleons form
factors we shall use the formalism of heavy-baryon chiral
perturbation theory, which treats the nucleon as an in-
finitely heavy particle and performs a corresponding non-
relativistic expansion [22]. The evaluation of nucleon form
factors in heavy-baryon ChPT is simplified if one works in
the Breit frame [23]. It is defined by the condition P = 0,
so that the incoming and outgoing nucleons have opposite
spatial momenta p′ = −p = ∆/2 and the same energy

p′0 = p0 =Mγ, where

γ =
√

1−∆2/4M2 . (7)
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In the heavy-baryon formalism the baryon has an addi-
tional quantum number, the velocity v, which in the Breit
frame is v = (1, 0, 0, 0). The incoming and outgoing nu-
cleon momenta are thus given by p = Mγv − ∆/2 and
p′ =Mγv +∆/2.

The Dirac algebra simplifies considerably in the heavy-
baryon formulation. All Dirac bilinears can be expressed
in terms of the velocity vµ and the spin operator

Sµ =
i

2
γ5σµν v

ν . (8)

Using that (v∆) = (vS) = 0, one finds in particular

u(p′)u(p) = γ ūv(p
′)uv(p) ,

u(p′)γµu(p) = vµ ūv(p
′)uv(p)

+
1

M
ūv(p

′) [Sµ, (S∆)]uv(p) ,

i

2M
u(p′)σµν∆

νu(p) = vµ
∆2

4M2
ūv(p

′)uv(p)

+
1

M
ūv(p

′) [Sµ, (S∆)]uv(p) ,

u(p′)γµγ5u(p) = 2γ ūv(p
′)Sµuv(p)

+
∆µ

2M2(1 + γ)
ūv(p

′) (S∆)uv(p) ,

u(p′)γ5u(p) =
1

M
ūv(p

′) (S∆)uv(p) , (9)

where the spinors

uv(p) = N
−1 1 + /v

2
u(p),

uv(p
′) = N−1

1 + /v

2
u(p′) (10)

with

N =

√
M + vp

2M
=

√
M + vp′

2M
=

√
1 + γ

2
(11)

are normalized as ūv(p, s
′)uv(p, s) = 2Mδs′s. With (9)

one obtains the following representation for the matrix
elements (5) in the Breit frame:

〈p′|On(a)|p〉 =
n∑

k=0

(Mγ)n−k−1 (av)n−k (a∆)k−1

× ūv(p
′)
[
(a∆)En,k(t)

+ γ [(aS), (S∆)]Mn,k−1(t)
]
uv(p) ,

〈p′|Õn(a)|p〉 =
n∑

k=1

(Mγ)n−k (av)n−k (a∆)k−1

× ūv(p
′)
[
2γ (aS) Ẽn,k−1(t)

+
(a∆)(S∆)

2M2
M̃n,k−1(t)

]
uv(p) , (12)

with

En,k(t) = An,k(t) +
∆2

4M2
Bn,k(t), for k < n ,

En,n(t) = γ2Cn(t) ,

Mn,k(t) = An,k(t) +Bn,k(t) ,

Ẽn,k(t) = Ãn,k(t) ,

M̃n,k(t) =
1

1 + γ
Ãn,k(t) + B̃n,k . (13)

The definition of the En and Ẽn is conventional but might
be confusing as En is not the n-th moment of E(x, ξ, t)
etc. We nevertheless use this notation, in order to make it
easier to compare our results with those in the literature.
Notice that according to (5) the terms with En,k in (12)
are only nonzero if k is even, whereas those with Mn,k−1,
Ẽn,k−1 and M̃n,k−1 are only nonzero if k is odd. We will
evaluate these form factors in heavy-baryon ChPT. It is
straightforward to transform back to the original form fac-
tors using

An,k(t) =
1

γ2

[
En,k(t)−

∆2

4M2
Mn,k(t)

]
,

Bn,k(t) =
1

γ2

[
Mn,k(t)−En,k(t)

]
,

B̃n,k(t) = M̃n,k(t)−
1

1 + γ
Ẽn,k(t) . (14)

3 Twist-two matrix elements in heavy-baryon

ChPT

Heavy-baryon ChPT combines the techniques of chiral
perturbation theory and of heavy-quark effective field the-
ory [22] (for a detailed review see ref. [24]). The effective
Lagrangian describes the pion-nucleon interactions in the
limit when mπ, q ¿ M , where q is a generic momentum.
In this situation the velocity v of the nucleon is preserved
in the process. One introduces the nucleon field with ve-
locity v as [22]

N(x) = e−iM0vx
(
Nv(x) + nv(x)

)
, (15)

whereM0 is the nucleon mass in the chiral limit. The fields
Nv(x), nv(x), respectively, contain the large and small
components of the nucleon field and satisfy /vNv = Nv,
/vnv = −nv. Their Fourier transform depends on the resid-
ual nucleon momentum, i.e. the original nucleon momen-
tum minus M0v. Integrating out the field nv(x), one ob-
tains an effective Lagrangian for the pion-nucleon system
which involves the nucleon field Nv(x) and pion field π(x),

Leff = Lπ + LπN , (16)

where

Lπ = L(2)π + L(4)π + . . . ,

LπN = L
(1)
πN + L

(2)
πN + . . . (17)
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are expanded in powers of q. The explicit expressions for
the lowest-order terms read [24]

L(2)π =
F 2

4
Tr
(
∂µU∂

µU † + (χ†U + U †χ)
)
,

L
(1)
πN = Nv

{
i(v∇) + gA(Su)

}
Nv ,

L
(2)
πN = Nv

{
(v∇)2 −∇2

2M0
−

igA
2M0

{
(∇S), (vu)

}

+c1 Tr
(
u†χu† + uχ†u

)
+

(
c2 −

g2A
8M0

)
(vu)2

+c3 uµu
µ +

(
c4 +

1

4M0

)
[Sµ, Sν ]uµuν

}
Nv (18)

with U = u2 = exp{iπaτa/F}, the covariant derivative
∇µ = ∂µ + Γµ, and

Γµ =
1

2

(
u†∂µu+ u∂µu

†
)
=

i

4F 2
εabc πa ∂µπ

bτ c +O(π4),

uµ = i
(
u†∂µu− u∂µu

†
)
= −

1

F
∂µπ

aτa +O(π3) . (19)

The trace Tr and the Pauli matrices τa refer to isospin
space. As is done in current lattice QCD calculations, we
assume isospin symmetry to be exact here, neglecting the
difference between u- and d-quark masses. The leading-
order parameters appearing in (18) are the pion decay
constant F (normalized to F ≈ 92MeV) and the nucleon
axial-vector coupling gA, both taken in the chiral limit.
The field χ implements the explicit breaking of chiral sym-
metry by the quark masses, and in the isospin limit can
be replaced by χ → m2 1l, where m is the bare pion and
1l the unit matrix in isospin space. Estimates of the low-

energy constants ci in the second-order Lagrangian L
(2)
πN ,

which are of order 1/M , can be found in [25]. We note

that L
(2)
πN induces corrections to the nucleon propagator,

which we treat as insertions on a nucleon line. They read
−i ((vl)2 − l2)/(2M0) and 4ic1m

2, where l is the residual
nucleon momentum, and are to be multiplied with a nu-

cleon propagator i/(vl+ i0) from L
(1)
πN on either side. The

pion-nucleon vertices following from L
(2)
πN can be found in

appendix A of [24].
In the following subsection we discuss how to construct

the operators in the effective theory that match the twist-
two quark operators (3). Nucleon matrix elements in the
Breit frame are then obtained as [26]

〈p′|O|p〉 = N 2ZN uv(p
′)GO(r

′, r)uv(p) , (20)

with the spinors uv and normalization N given in (10)
and (11). Here GO(r

′, r) is the truncated Green function
for external heavy-baryon fields Nv, Nv and the operator
O in the effective theory. The residual momenta of the
incoming and outgoing nucleon are given by

r = p−M0v = wv −∆/2 ,

r′ = p′ −M0v = wv +∆/2 (21)

with

w =M(γ − 1) + δM = −
∆2

8M
− 4c1m

2 +O(q3) , (22)

where δM = M −M0 is the nucleon mass shift. Finally,
ZN is the heavy-baryon field renormalization constant,

ZN = 1−
3m2g2A
2(4πF )2

−
9m2g2A
4(4πF )2

log
m2

µ2
− 8m2 dr28(µ)

+ O(q3) , (23)

where dr28(µ) is a low-energy constant in the Lagrangian

L
(3)
πN . As explained in [27] the corresponding operator is

required for renormalization but does not appear in phys-
ical matrix elements. The value of dr28(µ) can therefore
be chosen freely (with different choices resulting in differ-
ent values for other low-energy constants), and in [26] it
was chosen such that it compensates the log(m2/µ2) term
in (23) at the physical value of m. Since we are interested
in the pion mass dependence of matrix elements, we must
explicitly keep the logarithmic term in ZN . For further
discussion we refer to sect. 3.2.

3.1 Construction of effective operators

We now discuss how to construct the isoscalar local twist-
two operators in the effective theory that match the quark-
gluon operators O(a) defined in (3) and (4). The relevant
operators in the effective theory can be divided into two
groups: operators Oπ which contain only pion fields (and
couple to the nucleon via pion loops) and operators OπN

which are bilinear in the nucleon field. The matching of
operators thus takes the form

O(a) ∼= Oπ(a) +OπN (a) , Õ(a) ∼= ÕπN (a) , (24)

where we have taken into account that there is no isoscalar
pion operator of negative parity (i.e., no Õπ(a)). The pion
isoscalar operators Oπ(a) have been analyzed in several
papers [28,17–19] and we shall simply use their results.

Let us now list the building blocks for constructing

the operators OπN (a) and ÕπN (a), which we collectively
denote by Q(a), omitting the subscript πN for ease of
writing. They should be bilinear in the nucleon field and
should be tensors that have n indices contracted with the
auxiliary vector a according to (4). To build tensors we
have the following objects with Lorentz indices at our
disposal: the velocity vector vµ, the spin vector Sµ, the
derivative ∂µ, and the antisymmetric tensor εµνλρ. We re-
call that any Dirac matrix structure can be reduced to
an expression containing the spin operator Sµ, and that
the metric tensor gµν can be omitted in the construction
because the twist-two operators are traceless. Using the
identities

{Sµ, Sν} =
1

2
(vµvν−gµν) , [Sµ, Sν ] = iεµνλρ v

λSρ, (25)

we can impose that Sµ should appear at most linearly,
or quadratically as the commutator [Sµ, Sν ]. Concerning
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the derivative ∂µ, we find it useful to have it acting either
on single nonlinear pion fields u, u† in the combinations
Γµ or uµ given in (19), or as a total derivative on the

product of all fields, or in the antisymmetric form ∂
↔

µ =
1
2 (∂
→

µ − ∂
←

µ) on the product of all fields to its right or to
its left. This will make it easy to keep track of factors
∆µ in the corresponding matrix elements, which play a
particular role as we shall see. To give operators with the

correct chiral transformation behavior, the derivative ∂
↔

must appear in the covariant combination ∇
↔

µ = ∂
↔

µ +
Γµ. The fields and derivatives used in our construction

are then any number of uµ, ∇
↔

µ and χ± = u†χu† ± uχ†u
between the nucleon fields Nv and Nv, and any number of
total derivatives ∂µ acting on the operator as a whole. In

the sense of (19) we henceforth refer to ∂µ, ∇
↔

µ and uµ as
“derivatives”. They have chiral dimension 1, whereas χ±
has chiral dimension 2 and will not appear at the order of
the chiral expansion we limit ourselves to.

We can decompose the pion-nucleon operators Qn(a)
as

Qn(a) =

n∑

k=0

Mn−k−1 (av)n−kQn,k(a) , (26)

where Qn,k(a) = aµ1
. . . aµk Q

µ1...µk
n does not contain any

factors (av). The k external vectors a in Qn,k(a) can be

contracted only with derivatives ∂µ, ∇
↔

µ, uµ and the spin
vector Sµ, or with the antisymmetric tensor. There can
be at most one factor (aS) as discussed after (25), so that
Qn,k(a) has to contain at least k − 1 derivatives. We can
hence write1

Qn,k =MQn,k,−1 +Qn,k,0 +
1

M
Qn,k,1 + . . . , (27)

where the operator Qn,k,i has chiral dimension k+ i. Note
that due to parity the number of factors Sµ, uµ and εµνλρ
must be even for O and odd for Õ. We remark that the
contraction of a with the ε-tensor involves at least two
derivatives, given that we chose to replace its simultaneous
contraction with vλ and Sρ by [Sµ, Sν ] using (25). As a
consequence, the antisymmetric tensor does not appear in
the operators with lowest chiral dimension for a given k.

3.2 Tree-level insertions

At tree level, the matrix elements of the effective operators
between two nucleon states are easy to calculate. Since uµ
and Γµ involve at least one or two pion fields according
to (19), derivatives in the effective operators are to be

replaced as ∂µ → i∆µ, uµ → 0, and ∇
↔

µ → −iwvµ with w
given in (22). Notice that, while generically the derivative

∇
↔

µ counts as O(q) in the chiral expansion, the kinematics
of the external nucleon momenta forces wvµ to be of order

1 Instead of M one could also use M0 or F in (26) and (27),
since all are of the same order in chiral power counting. We
find powers of M most convenient, because they also appear
in the form factor decompositions (12).

O(q2). As a result, the leading-order contributions of the
operator Qn,k to the form factors in (12) come from the
terms with maximum number of factors ∆µ and no factor
wvµ. With (26) one readily obtains

〈p′|On,k(a)|p〉
LO
= (a∆)k−1 ūv(p

′)

×
[
(a∆)E

(0)
n,k + [(aS), (S∆)]M

(0)
n,k−1

]
uv(p) ,

〈p′|Õn,k(a)|p〉
LO
= (a∆)k−1 ūv(p

′)

×

[
2M(aS) Ẽ

(0)
n,k−1 +

(a∆)(S∆)

2M
M̃

(0)
n,k−1

]
uv(p) , (28)

where the superscript on each form factor indicates the
term of order O(q0) in its chiral expansion. At this order,
the form factors En,k and Mn,k−1 of the vector GPD are
related to the matrix element of the operator On,k,0, since
the nucleon matrix element of the operator On,k,−1 is zero
at tree level. As explained above, this operator contains
a factor (aS), which due to parity must be accompanied
by the axial field uµ and hence does not contribute to
tree-level matrix elements without external pions. For the

axial vector GPDs one finds that the form factor Ẽn,k−1

(M̃n,k−1) receives its leading contribution from the opera-

tor Õn,k,−1 (Õn,k,1), given the required number of factors
∆µ in (28).

Beyond leading order, tree-level insertions contribute
to the form factors starting at order O(q2). Contributions
proportional to ∆2 are due to operators with ∂2 or to a

factor w from operators with ∇
↔
, or to the kinematic fac-

tors γ in (12) and N in (20). Contributions proportional

to m2 are due to operators with χ+ or with ∇
↔

and from
the wave function renormalization constant ZN in (20). In
the results of the following sections, we explicitly include
the terms proportional to g2A in the expansion (23) of ZN ,
whereas contributions from dr28 are lumped into the co-
efficients describing the m2 corrections due to tree-level
insertions.

3.3 Loop contributions

Let us now consider a loop diagram with the insertion
of the operator Qn(a). One easily finds that the term
Mn−k−1 (av)n−kQn,k(a) in the sum (26) can contribute to
the form factors in (12) which are accompanied by at least

n − k powers of (av), i.e. to En,m, Mn,m−1, Ẽn,m−1 and

M̃n,m−1 with m ≤ k. Chiral counting determines which
terms can contribute to a given order. Namely, the contri-
bution of the operator Qn,k,i in a loop diagram has chiral
dimension

Dk,i = 4L+ (k + i)

+

Nπ∑

j=1

dimVπ(j) +

NπN∑

j=1

dimVπN (j)− 2Iπ − IN , (29)

where L is the number of loops and (k + i) is the chiral
dimension of the operator insertion. Vπ(j) and VπN (j),
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respectively, denote the j-th vertex from Lπ and LπN
in the graph. Nπ and NπN are the corresponding to-
tal numbers of vertices, and Iπ and IN are the num-
bers of pion and nucleon propagators2. Using the relation
L = Iπ + IN −Nπ −NπN (see e.g. [24]) and the fact that
for our specific diagrams IN = NπN , we can rewrite this
expression as a sum of positive terms, which makes it easy
to identify the different contributions at a given order:

Dk,i = 2L− 1 + k + (i+ 1)

+

Nπ∑

j=1

(
dimVπ(j)− 2

)
+

NπN∑

j=1

(
dimVπN (j)− 1

)
. (30)

For each vertex we can insert either the lowest or any
higher order, i.e. dimVπ(j) = 2, 4, . . . and dimVπN (j) =
1, 2, . . . . Note that a loop diagram with chiral dimension
Dk,i generates contributions to a nucleon matrix element
of order O(qd) with d ≥ Dk,i. This is, on one hand, be-
cause of the explicit factors N and ZN in (20), and, on the
other hand, because the sum rµ + r′µ = 2wvµ is of order
O(q2) and thus one order higher than the generic power
associated with residual nucleon momenta.

The form factors enter a matrix element multiplied by
factors (a∆) or (S∆) as given in (12). Taking these into
account, one finds that the chiral correction from Qn,k,i

to En,m and Mn,m−1 has at least order Dk,i − m, while

for the form factors Ẽn,m−1 and M̃n,m−1 it has at least
order Dk,i −m + 1 and Dk,i −m − 1, respectively. This
is a main result of our paper and allows one to determine
which operators need to be considered to calculate the
corrections to a form factor to a given order in the chiral
expansion. Because Dk,i contains a term k and because
of the constraint k − m ≥ 0, the number of loops and
the order of the chiral Lagrangian required to calculate
the lowest-order corrections for a given form factor do not

grow with m. Instead, a growing number of factors ∆µ

accompanying a form factor in the nucleon matrix element
requires a growing number of derivatives in the operator
Qn,k.

As an application of our general result we find that
the form factors En,m andMn,m−1 can receive corrections
starting at order

– O(q) from one-loop diagrams with insertion of the op-
erator Qn,m,−1 and leading-order (LO) pion-nucleon
vertices,

– O(q2) from the one-loop diagrams with insertion of the
operators Qn,m,0 and Qn,m+1,−1 and LO pion-nucleon
vertices, and from one-loop diagrams with insertion of
the operator Qn,m,−1 and one next–to–leading-order
(NLO) pion-nucleon vertex or nucleon propagator cor-
rection.

In turn, the form factor Ẽn,m−1 receives corrections start-
ing at order O(q2) from one-loop diagrams with leading-
order vertices and insertion of the operator Qn,m,−1. For

2 Note that a nucleon propagator correction from a higher-
order Lagrangian counts as one (nucleon-nucleon) vertex with
two nucleon propagators on either side, see the discussion af-
ter (19).

Table 1. Four-vectors and their products appearing in the
numerators of the loop graphs of fig. 1. NN vertices (arising
from nucleon propagator corrections) are not explicitly shown
in the graphs.

Derivatives in operator insertion

∂µ ∆µ

∇
↔

µ lµ and wvµ

uµ lµ

Vertices

πNN at LO Sl

πNN at NLO (vl)(Sl)± (vl)(S∆)

NN at NLO (vl)2 − l2 ± l∆−∆2/4

M̃n,m−1 the discussion of corrections up to order O(q2) is
more involved and will be given in sect. 4.1.

To conclude the discussion of power counting, we
consider the contribution to the form factors En,m and
Mn,m−1 of loop graphs with the insertion of the pion op-
erators Oπ(a), see (24). Repeating the above argument
and taking into account that now IN = NπN − 1, one
finds that such diagrams have chiral dimension

Dπ = 2L− 1 + dimOπ

+

Nπ∑

j=1

(
dimVπ(j)− 2

)
+

NπN∑

j=1

(
dimVπN (j)− 1

)
. (31)

Given that the leading operator On
π(a) contributing to

On(a) has the chiral dimension n, one finds that it can
contribute to the form factors En,m and Mn,m−1 starting
at order O(qn−m+1). Note that because of charge conju-
gation invariance the isoscalar pion operators On

π(a) have
even n and that due to time reversal invariance the form
factors En,k andMn,k vanish for odd k. Together with our
power-counting formula one thus finds that En,n gets con-
tributions from On

π(a) starting at order O(q) and Mn,n−2

starting at order O(q2). All other corrections from opera-
tors Oπ(a) to form factors En,k and Mn,k start at O(q3).

Let us now take a closer look at the one-loop graphs
with pion-nucleon operator insertions, which are shown
in fig. 1. With our construction of operators explained
in sect. 3.1 we can readily analyze the origin of factors
∆µ, whose number determines to which form factor a
graph will contribute. Using (v∆) = (vS) = 0 and the
form (18) of the LO and NLO pion-nucleon Lagrangian,
we find that the numerators of the loop integrals are com-
posed as specified in table 1. The denominators of the pion
and nucleon propagators, respectively, are (l2 −m2 + i0)
and (lv + w + i0), so that the loop integration turns ten-
sors lµ1

. . . lµj into tensors constructed from vµ and gµν .
A factor ∆µ that can be contracted with aµ or Sµ (i.e. is
not contracted to ∆2) can hence only originate from total
derivatives ∂µ in the operator insertion and from an NLO
pion-nucleon vertex or nucleon propagator correction. We
will see that this reduces considerably the number of op-
erators contributing to the leading chiral corrections of
nucleon GPDs.
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Fig. 1. One-loop graphs with the insertion of a pion-nucleon operator OπN (a) or ÕπN (a), denoted by a black blob. Not shown
is the analog of graph c with residual momentum l + wv +∆/2 of the intermediate nucleon line.

4 Chiral corrections up to order O(q2)

4.1 Axial-vector operators

Using the formalism developed in the previous section, we
now evaluate the form factors up to relative order O(q2).

Let us start by giving the operators in Õn,k,i that have
the maximum number of total derivatives ∂µ contracted
with aµ or Sµ. It will turn out that these are required to
produce the factors of (a∆) and (S∆) in the form factor
decomposition (12). With the constraints of parity invari-
ance, we find

Õn,k,−1(a) = b̃n,k (ia∂)
k−1Nv(aS)Nv + . . . ,

Õn,k,1(a) = c̃n,k (ia∂)
k(i∂µ)Nv S

µNv + . . . , (32)

where the . . . stand for operators with fewer total deriva-

tives. One has Ẽ
(0)
n,k−1 = b̃n,k/2 and M̃

(0)
n,k−1 = 2c̃n,k for

the tree-level contributions at order O(q0). From the time
reversal constraints on the form factors it follows that the
low-energy constants b̃n,k and c̃n,k are zero for even k.

As derived in sect. 3.3, the leading chiral corrections to

Ẽn,k−1 come from one-loop graphs with LO pion-nucleon

vertices and the operator Õn,k,−1. Since this operator does
not contain pion fields, one needs to calculate only graph
a in fig. 1. One finds

Ẽn,k(t) = Ẽ
(0)
n,k

{
1−

3m2g2A
(4πF )2

[
log

m2

µ2
+ 1

]}

+ Ẽ
(2,m)
n,k m2 + Ẽ

(2,t)
n,k t+O(q3) , (33)

where the terms going with m2 and t originate from tree-
level insertions as discussed at the end of sect. 3.2. Here
and in the following we use the subtraction scheme of [14]
for the loop graphs, subtracting 1/ε + log(4π) + ψ(2) for
each 1/ε pole in 4 − 2ε dimensions. The renormalization
scale is denoted by µ, and the µ-dependence of the loga-

rithm in (33) cancels against the µ-dependence of Ẽ
(2,m)
n,k ,

which we have not displayed for simplicity. Note that the
bare parametersm, F , gA can be replaced with their coun-
terparts at the physical point within the precision of our

result. Since the nonanalytic corrections in (33) are inde-
pendent of the moment indices n and k, they apply to the

entire nucleon GPD H̃(x, ξ, t),

H̃(x, ξ, t) = H̃(0)(x, ξ)

{
1−

3m2g2A
(4πF )2

[
log

m2

µ2
+ 1

]}

+m2 H̃(2,m)(x, ξ) + tH̃(2,t)(x, ξ) + O(q3) . (34)

Let us now consider the chiral corrections for M̃n,k−1.
It follows from (12) that the relevant diagrams have to
produce a factor (a∆)k(S∆). By power counting, the form

factor M̃n,k−1 could receive corrections of order O(q0)
from diagrams with LO vertices and the operator inser-

tion Õn,k,−1. Similarly, corrections of order O(q) could
come from the diagrams with LO vertices and insertion

of Õn,k+1,−1 or Õn,k,0, and from diagrams with insertion

of Õn,k,−1 and one NLO pion-nucleon vertex or nucleon

propagator correction. One finds no operator in Õn,k,0

that has k or more partial derivatives contracted with aµ

or Sµ, and the same holds of course for Õn,k,−1. According
to our discussion in sect. 3.3 the graphs just discussed can
thus produce at most k vectors ∆µ (not counting those

appearing in ∆2) and hence do not contribute to M̃n,k−1.
At order O(q2) there is a number of possibilities:

1. Graphs with LO vertices and insertion of Õn,k+2,−1,

Õn,k+1,0 or Õn,k,1. The insertion of Õn,k+1,0 does not
produce a sufficient number of factors ∆µ, whereas

insertion of Õn,k+2,−1 gives a factor (a∆)k+1(aS),

which contributes to the form factor Ẽn,k+1 but not

to M̃n,k−1. A correction to M̃n,k−1 is obtained from

insertion of the operator Õn,k,1 given in (32), which
already provides the tree-level term of this form fac-
tor. Only the loop graph in fig. 1a is nonzero for this
insertion, and the result is analogous to the one for the

contribution of Õn,k,−1 to Ẽn,k−1.
2. Graphs with one NLO vertex or propagator correction

and insertion of Õn,k+1,−1 or Õn,k,0. Insertion of Õn,k,0

does again not provide enough factors of ∆µ, whereas

graphs with Õn,k+1,−1 give zero due to time reversal
invariance. This can be seen by direct calculation, or by
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noting that M̃n,k−1 is only nonzero for odd k, whereas

the coefficient b̃n,k+1 is only nonzero for even k, as
remarked below (32).

3. Graphs with insertion of Õn,k,−1 and i) two loops with
LO vertices, or ii) one loop with two NLO pion-nucleon
vertices or nucleon propagator corrections, or iii) one
loop with one NNLO pion-nucleon vertex or nucleon
propagator correction, or iv) one loop with a pion prop-

agator correction from L
(4)
π . The operator insertion

provides k − 1 factors of ∆µ, so that two more fac-
tors must be provided by the vertices or propagator
corrections (without being contracted to ∆2). This is
not possible in case i), because the LO pion-nucleon
vertices only involve pion momenta and the pion mo-
menta in a two-loop graph can be parameterized such
that they are independent of ∆ (as in the one-loop
graphs of fig. 1). Likewise, a pion propagator correc-
tion in case iv) does not depend on ∆ and can there-
fore not contribute. In cases ii) and iii) one obtains
nonzero contributions from the graph in fig. 1a. The
NNLO vertices and propagator corrections follow from

the Lagrangian L
(3)
πN given in [27]. We find that the

only term providing the two required factors of ∆µ is
the πNN vertex generated by

−
gA
4M2

0

Nv

{
(∇
←
S)(u∇

→
) + (∇

←
u)(S∇

→
)
}
Nv . (35)

Note that this vertex does not introduce a new low-
energy constant, similarly to the term proportional

to gA in L
(2)
πN , which generates the πNN coupling at

NLO. These terms arise from the 1/M0 expansion of
the leading-order relativistic pion-nucleon Lagrangian
N (i /∇−M0 +

1
2gA/uγ5)N , see, e.g., [24].

Putting everything together, we obtain

M̃n,k(t) = M̃
(0)
n,k

{
1−

3m2g2A
(4πF )2

[
log

m2

µ2
+ 1

]}

− Ẽ
(0)
n,k

m2g2A
(4πF )2

log
m2

µ2

+ M̃
(2,m)
n,k m2 + M̃

(2,t)
n,k t+O(q3) , (36)

where the terms going with m2 and t are due to tree-level
insertions. With (33), (6) and (14) one can write for the

isoscalar quark GPD Ẽ(x, ξ, t)

Ẽ(x, ξ, t) = Ẽ(0)(x, ξ)

{
1−

3m2g2A
(4πF )2

[
log

m2

µ2
+ 1

]}

− H̃(0)(x, ξ)
m2g2A
(4πF )2

log
m2

µ2

+m2 Ẽ(2,m)(x, ξ) + tẼ(2,t)(x, ξ) + O(q3) . (37)

4.2 Vector operators

The analysis of the vector operators proceeds along similar
lines. The operator On,k,0 reads

On,k,0(a) = bn,k (ia∂)
kNv Nv

+cn,k (ia∂)
k−1 (i∂µ)Nv [(Sa), S

µ]Nv + . . . , (38)

where the . . . denote operators with fewer total deriva-

tives. One finds E
(0)
n,k = bn,k and M

(0)
n,k−1 = −cn,k for the

leading-order tree-level insertions, which implies bn,k =
cn,k+1 = 0 for odd k.

According to (12) the graphs that give chiral correc-
tions to En,k or Mn,k−1 must produce k-factors of ∆µ

contracted with aµ or Sµ. With the constraints from par-
ity invariance one finds that the operator On,k,−1 does not
contain terms which have k − 1 or more total derivatives
contracted with aµ or Sµ. With the results of sect. 3.3 this
implies that En,k and Mn,k−1 do not receive corrections
from pion-nucleon operator insertions at order O(q), and
that corresponding corrections at order O(q2) can only
come from the diagram in fig. 1a with LO vertices. One
finds that the one-loop contribution to the form factor
En,k is canceled by the terms proportional to g2A in the
wave function renormalization constant (23). For the form
factor Mn,k one obtains a correction

M
(0)
n,k

{
1−

3m2g2A
(4πF )2

log
m2

µ2

}
. (39)

We note that for n = 1, k = 0 this implies a chiral loga-
rithm for the isoscalar magnetic form factor GM,s(t),

GM,s(t) = µ(0)s

{
1−

3m2g2A
(4πF )2

log
m2

µ2

}

+G
(2,m)
M,s m2 +G

(2,t)
M,s t+O(q3) , (40)

where µ
(0)
s is the isoscalar magnetic moment of the nucleon

in the chiral limit and where we have added analytic terms
due to tree-level insertions. The form (40) is consistent
with the result of the relativistic calculation in [29].

One finally has to evaluate corrections due to the dia-
grams in fig. 2 with insertion of the pion operator On

π(a),
where n is even. We use the representation of this operator
given in [19]3,

On
π(a) = F 2

n−2∑

k=0
even

ãn,k (ia∂)
k Tr

[
(aL) (2ia∂

↔
)n−k−2(aL)

+ (aR) (2ia∂
↔
)n−k−2(aR)

]
(41)

with Lµ = U †∂µU and Rµ = U∂µU
†. As discussed in

sect. 3.3, the corrections to Mn,k start at order O(q2) for

3 Note that the normalization of the twist-two operators (3)
used here differs from that in [19] by a factor of 2. The coeffi-
cients ãn,k have the same normalization here and in [19].
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Fig. 2. One-loop graphs with the insertion of the pion operator On
π(a), denoted by a black blob.

k = n− 2 and at higher order otherwise. They are due to
diagrams with LO vertices, so that only the graph in fig. 2a
contributes. This is because the leading-order ππNN ver-
tex corresponds to an isovector transition of the nucleon,
as follows from (18) and the expansion of Γ in (19). Com-
bining the result with the correction in (39) and adding
analytic terms from tree-level insertions, we obtain

Mn,k(t) =M
(0)
n,k

{
1−

3m2g2A
(4πF )2

log
m2

µ2

}
+ δk,n−2M

(2,π)
n (t)

+M
(2,m)
n,k m2 +M

(2,t)
n,k t+O(q3) , (42)

where k is even and

M (2,π)
n (t) =

3g2A
(4πF )2

n−2∑

j=0
even

ãn,n−j−2

×

∫ 1

−1

dη

[
∂2

∂η2
ηj(1− η2)

]
m2(η) log

m2(η)

µ2

=
3g2A

(4πF )2

n∑

j=2
even

2−jj(j − 1)A
π(0)
n,n−j

×

∫ 1

−1

dη ηj−2m2(η) log
m2(η)

µ2
(43)

with

m2(η) = m2 −
t

4
(1− η2) . (44)

Here A
π(0)
n,k is the chiral limit of the form factors Aπ

n,k(t)
describing the moments of the pion isoscalar GPD,

∫ 1

−1

dxxn−1HI=0
π (x, ξ, t) =

n∑

k=0
even

(2ξ)kAπ
n,k(t). (45)

The relation to the low-energy constants ãn,k reads [19]

A
π(0)
n,k = 2n−k

[
ãn,k−2 − ãn,k

]
, (46)

which implies

ãn,n−k = −
n∑

j=k
even

2−jA
π(0)
n,n−j , for k > 0,

0 =

n∑

j=0
even

2−jA
π(0)
n,n−j . (47)

The corrections to En,k start at order O(q) for k = n
and at order O(q3) or higher otherwise. At one-loop order
we obtain O(q) corrections to En,n from graphs involving
only LO vertices. Corrections of order O(q2) involve either
graphs with one NLO vertex or propagator correction, or
graphs with LO vertices and the subleading part wv of the
residual nucleon momenta, see the discussion after (30).
Our final result including analytic terms from tree-level
insertions is

En,k(t) = E
(0)
n,k + δn,k

[
E(1,π)
n (t) + E(2,π)

n (t)
]

+ E
(2,m)
n,k m2 + E

(2,t)
n,k t+O(q3) , (48)

where the order O(q) correction reads

E(1,π)
n (t) = −M(2m2 − t)

3πg2A
8(4πF )2

×
n−2∑

j=0
even

ãn,n−j−2

∫ 1

−1

dη
ηj(1− η2)

m(η)

=M(2m2 − t)
3πg2A

8(4πF )2

n∑

j=2
even

2−j A
π(0)
n,n−j

∫ 1

−1

dη
1− ηj

m(η)
,

(49)
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and the order O(q2) term is

E(2,π)
n (t) =

3m2g2A
(4πF )2

log
m2

µ2

n−2∑

j=0
even

ãn,n−j−2

+
6

(4πF )2

n−2∑

j=0
even

ãn,n−j−2

∫ 1

−1

dη ηj(1− η2)

×

{
g2A
32

[
2t

(
log

m2(η)

µ2
+ 1

)
−

(t− 2m2)2

m2(η)

]

+M

[
c1m

2

(
log

m2(η)

µ2
+ 1

)
−

3

4
c2m

2(η) log
m2(η)

µ2

−c3m
2(η)

(
log

m2(η)

µ2
+

1

2

)]}

= −
3m2g2A
2(4πF )2

log
m2

µ2

n∑

j=2
even

2−jj A
π(0)
n,n−j

−
6

(4πF )2

n∑

j=2
even

2−j A
π(0)
n,n−j

∫ 1

−1

dη (1− ηj)

×

{
g2A
32

[
2t

(
log

m2(η)

µ2
+ 1

)
−

(t− 2m2)2

m2(η)

]

+M

[
c1m

2

(
log

m2(η)

µ2
+ 1

)
−

3

4
c2m

2(η) log
m2(η)

µ2

−c3m
2(η)

(
log

m2(η)

µ2
+

1

2

)]}
. (50)

The integrals over η in (43), (49) and (50) are elementary,
but we have not found a simple closed form of the result
for general n. In the next section, we give explicit results
for the values and derivatives at t = 0 of the form factors.

Our result for the form factor M̃n,k(t) disagrees
with [30], where it was taken for granted that the only
operators which contribute at order O(q2) are those which
already appear at tree level in the same form factor. As our
analysis shows, this holds indeed in many cases but not in
all. For all other form factors our results agree with [30]
where comparable4. For n = 2 our results for the vector
operators also agree with those of Belitsky and Ji [21]5.

5 Results for moments of GPDs

We now transform the results of the previous section to the

basis of the form factors An,k, Bn,k, Cn and Ãn,k, B̃n,k

corresponding to moments of GPDs in the conventional

4 Note that [30] gives the correction to En,n at order O(q)
but not at order O(q2).

5 When comparing results, one must take into account
that [21] uses MS renormalization, where for each pole in 4−2ε
dimensions one subtracts 1/ε+log(4π)+ψ(1), whereas we use
the scheme of [14] and subtract 1/ε+ log(4π) + ψ(2).

parameterization. We give the values and derivatives of
these form factors at t = 0, which allows us to obtain
closed expressions. Furthermore, these quantities are of
most immediate interest in studies of GPDs on the lattice.

With our results (33), (36), (42), (48) and the conver-
sion formulae (13), (14) one obtains for the form factors
at t = 0:

Ãn,k(0) = Ã
(0)
n,k

{
1−

3m2g2A
(4πF )2

[
log

m2

µ2
+ 1

]}

+ Ã
(2,m)
n,k m2 +O(m3) ,

B̃n,k(0) = B̃
(0)
n,k

{
1−

3m2g2A
(4πF )2

[
log

m2

µ2
+ 1

]}

− Ã
(0)
n,k

m2g2A
(4πF )2

log
m2

µ2
+ B̃

(2,m)
n,k m2 +O(m3) ,

An,k(0) = A
(0)
n,k +A

(2,m)
n,k m2 +O(m3) ,

Bn,k(0) = B
(0)
n,k −

(
A
(0)
n,k +B

(0)
n,k

) 3m2g2A
(4πF )2

log
m2

µ2

+ δk,n−2M
(2,π)
n (0) +B

(2,m)
n,k m2 +O(m3) ,

Cn(0) = C(0)
n + E(1,π)

n (0) + E(2,π)
n (0)

+ C(2,m)
n m2 +O(m3) (51)

with coefficients related to those in sect. 4 by Ã
(0)
n,k = Ẽ

(0)
n,k,

B̃
(0)
n,k = M̃

(0)
n,k −

1
2 Ẽ

(0)
n,k, A

(0)
n,k = E

(0)
n,k, B

(0)
n,k = M

(0)
n,k − E

(0)
n,k,

C
(0)
n = E

(0)
n,n and by analogous relations for the coefficients

with superscript (2,m). Setting m, gA, F to their physical
values and choosing µ =M , one finds that the corrections
from loop graphs with nucleon operator insertions in (51)
are moderately large, with 3m2g2A (4πF )−2[ log(m2/µ2) +
1] ≈ −0.20 and m2g2A (4πF )−2 log(m2/µ2) ≈ −0.09. In
the case of Bn,k this loop correction can be substantial if
|Bn,k| ¿ |An,k|, which is empirically found for the elec-
tromagnetic form factors (i.e., the case n = 1) and also in
lattice evaluations [9] for the moments with n = 2. The
contributions to Bn,n−2(0) and Cn(0) from loop graphs
with pion operator insertions are

M (2,π)
n (0) =

6m2g2A
(4πF )2

log
m2

µ2

n∑

j=2
even

2−jj A
π(0)
n,n−j ,

E(1,π)
n (0) =

3πmMg2A
2(4πF )2

n∑

j=2
even

2−j
j

j + 1
A
π(0)
n,n−j ,

E(2,π)
n (0) = −

3m2g2A
2(4πF )2

log
m2

µ2

n∑

j=2
even

2−jj A
π(0)
n,n−j

+
12m2

(4πF )2

{
g2A
8
−M

[
c1

(
log

m2

µ2
+ 1

)
−

3

4
c2 log

m2

µ2

−c3

(
log

m2

µ2
+

1

2

)]} n∑

j=2
even

2−j
j

j + 1
A
π(0)
n,n−j . (52)
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Setting M , m, gA, F to their physical values, choosing
µ = M , and taking the estimates c1 ≈ −0.9GeV−1,
c2 ≈ 3.3GeV−1, c3 ≈ −4.7GeV−1 from [25] we find

that M
(2,π)
2 (0) ≈ −0.27A

π(0)
2,0 and E

(1,π)
2 (0) +E

(2,π)
2 (0) ≈

(0.12+0.17)A
π(0)
2,0 . At the physical point, the order O(m)

correction is hence not very large. The full size of the or-
der O(m2) corrections depends of course on the analytic
terms in (51), whose values are not known.

The derivatives of the form factors at t = 0 obtain
nonanalytic contributions only from the pion operator in-
sertions. Writing ∂tA(0) = [ ∂

∂t
A(t)] t=0 etc. we have

∂tÃn,k(0) = Ẽ
(2,t)
n,k +O(m) ,

∂tB̃n,k(0) = M̃
(2,t)
n,k − Ẽ

(2,t)
n,k

/
2− Ẽ

(0)
n,k

/
(32M2) + O(m) ,

∂tAn,k(0) = E
(2,t)
n,k −

(
M

(0)
n,k − E

(0)
n,k

)/
(4M2) + O(m) ,

∂tBn,k(0) = δk,n−2 ∂tM
(2,π)
n (0) +M

(2,t)
n,k − E

(2,t)
n,k

+
(
M

(0)
n,k −E

(0)
n,k

)/
(4M2) + O(m) ,

∂tCn(0) = ∂tE
(1,π)
n (0) + ∂tE

(2,π)
n (0)

+ E(2,t)
n,n + E(0)

n,n

/
(4M2) + O(m) (53)

with

∂tM
(2,π)
n (0) = −

3g2A
(4πF )2

[
log

m2

µ2
+ 1

] n∑

j=2
even

2−j j

j + 1
A
π(0)
n,n−j ,

∂tE
(1,π)
n (0) = −

M

m

πg2A
8(4πF )2

n∑

j=2
even

2−j j (5j + 14)

(j + 1)(j + 3)
A
π(0)
n,n−j ,

∂tE
(2,π)
n (0) = −

3g2A
4(4πF )2

[
log

m2

µ2
+ 3

] n∑

j=2
even

2−j j

j + 1
A
π(0)
n,n−j

+
2

(4πF )2

{
g2A
8

+M

[
c1 −

3

4
c2

(
log

m2

µ2
+ 1

)

−c3

(
log

m2

µ2
+

3

2

)]} n∑

j=2
even

2−j
j (j + 4)

(j + 1)(j + 3)
A
π(0)
n,n−j .

(54)

Note that in the chiral limit the derivative ∂tBn,n−2(0) ∼

∂tM
(2,π)
n (0) diverges as log(m2/µ2) and that ∂tCn(0) ∼

∂tE
(1,π)
n (0) diverges as 1/m. With the parameters speci-

fied above, one finds ∂tM
(2,π)
2 (0) ≈ 1.7GeV−2A

π(0)
2,0 and

∂tE
(1,π)
2 (0)+∂tE

(2,π)
2 (0) ≈ −(2.5+1.2)GeV−2A

π(0)
2,0 . Nu-

merically, the term ∂tE
(1,π)
n (0) is thus important but not

extremely large at the physical point.

6 Summary

Using heavy-baryon chiral perturbation theory, we have
calculated the chiral corrections up to order O(q2) for

the form factors which parameterize moments of nucleon
GPDs. We have restricted ourselves to vector and axial-
vector quark distributions in the isosinglet combination.
Our results generalize trivially to the corresponding gluon
GPDs, which have the same quantum numbers and there-
fore the same corresponding operators in the effective the-
ory (except for the values of the matching constants). Our
method is also applicable to operators of different tensor
or flavor structure.

The moments of GPDs contain terms of different or-
der in 1/M , ranging from Mn−1 to M−1. We have shown
that, due to the way in which factors vµ and ∆µ arise in
the calculation, the number of loops and the order in the
expansion of the effective Lagrangian required to calculate
a form factor to a given order O(qd) does not grow with
the number of factors ∆µ that accompany the form factor
in the nucleon matrix element. A general power-counting
formula is given after (30). In the case of the form factors

M̃n,k(t), calculation of the order O(q2) correction requires
the pion-nucleon Lagrangian up to third order.

We have found that the form factors Ẽn,k(t) and

M̃n,k(t) receive corrections of order O(q2) which, apart
from analytic terms, are independent of the moment in-
dices and independent of t. The same holds for the one-
loop corrections to Mn,k(t) with k < n − 2, whereas the
corresponding corrections for En,k with k < n are zero.
The form factors Mn,n−2 receive additional corrections at
order O(q2) from one-loop graphs with the insertion of
pion operators, and En,n receives corresponding contribu-
tions starting at order O(q).

For the form factors parameterizing moments of

isoscalar GPDs, we find that Bn,k, Ãn,k and B̃n,k at t = 0
receive nonanalytic corrections of the form m2 log(m2/µ2)
from loops with nucleon operator insertions. No such cor-
rections are found for An,k and Cn. The form factors
Bn,n−2 at t = 0 receive in addition m2 log(m2/µ2) correc-
tions from loop graphs with pion operator insertions, and
the corresponding nonanalytic contributions to Cn give
a term proportional to m. To leading chiral order, loop
graphs with pion operator insertions are the only source
of nonanalytic m2-dependence for the derivatives of the
form factors at t = 0. The derivative of Mn,n−2 diverges
like log(m2/µ2) in the chiral limit, and the derivative of
Cn like 1/m.
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